top of page

Leonhard Euler

Leonhard Euler nació el 15 de abril de 1707 en Basilea, Suiza y murió el 18 de septiembre de 1783 en San Petersburgo, Rusia. Fue hijo de un clérigo, que vivía en los alrededores de Basilea. Su padre Paul Euler había estudiado teología en la universidad de Basilea y había asistido a las clases de Jacob Bernoulli. De hecho Paul Euler y Johann Bernoulli habían vivido juntos en la casa de Jacob Bernoulli durante sus estudios en la universidad.


Pasó su infancia en Riehen un pueblecito en las cercanías de Basilea. Su padre, alumno de Bernuilli, era pastor calvinista y esperaba que su hijo siguiera la carrera de Teología, pero su amistad con los Bernouilli hizo despertar su vocación por las matemáticas. Johan Bernouilli fue su tutor y profesor de matemáticas. Los sábados por la mañana iba su casa a resolver dudas, ya que Bernouilli le había reservado una sesión semanal. Para Euler era una cuestión de amor propio reducir el número de preguntas a su maestro. Fue amigo de los hijos de Bernoulli; Nikolaus, Daniel y Johann II.


A una edad temprana fue enviado a la Universidad de Basilea, donde atrajo la atención de Johann Bernoulli. Inspirado por un maestro así, maduró rápidamente, a los 17 años de edad, cuando se graduó Doctor, provocó grandes aplausos con un discurso probatorio, el tema del cual era una comparación entre los sistemas cartesiano y newtoniano.


Su padre deseaba que siguiera el estudio de la teología. Pero, cuando vio que el talento de su hijo iba en otra dirección le autorizó a seguir sus estudios favoritos. A la edad de diecinueve años, envió dos memorias a la Academia de París, una sobre arboladura de barcos, y la otra sobre la filosofía del sonido. Estos ensayos marcan el comienzo de su espléndida carrera.


Se presentó a la cátedra de Física pero fue rechazado por su juventud y ese mismo año recibió una mención honorífica de la Academia de Ciencias de París por su trabajo “disposición óptima de los mástiles de un barco” aunque nunca había visto navegar un barco.


En 1725 cursó Medicina, con la esperanza de obtener una plaza en San Petersburgo. Pero el mismo día de su llegada a Rusia moría la Emperatriz Catalina I fundadora junto a su esposo Pedro I el Grande de la Academia que estuvo a punto de sucumbir con los nuevos gobernantes. Ese mismo año se alistó en la marina rusa, con el grado de lugarteniente y allí aprendió los principales aspectos relativos a la estructura y funcionamiento de las naves, llegando a convertirse en una verdadera autoridad naval. En 1730 abandonó la marina debido a que le concedieron la cátedra de Física y en 1733 la de Matemáticas que había dejado su amigo Daniel Bernuilli.


Hacia 1730, había realizado una serie de trabajos sobre cartograpía, ciencias de la educación, magnetismo, máquinas de vapor y construcción de barcos. Por otro lado, su investiogación teórica fue en Teoría de números, análisis infinitesimal incluyendo ecuaciones diferenciales y cálculo de variaciones. Especialmente estudió ciertas funciones y ecuaciones diferenciales que hoy día llevan su nombre.


Dos años más tarde, Euler dio una muestra insigne de su talento, cuando efectuó en tres días la resolución de un problema que la Academia necesitaba urgentemente, pese a que se le juzgaba insoluble en menos de varios meses de labor. Pero el esfuerzo realizado tuvo por consecuencia la pérdida de la vista de un ojo. Pese a esta calamidad, prosperó en sus estudios y descubrimientos; parecía que cada paso no hacía más que darle fuerzas para esfuerzos futuros. Hacia los treinta años de edad, fue honrado por la Academia de París, recibiendo un nombramiento; asimismo Daniel Bernoulli y Collin Maclaurin, por sus disertaciones sobre el flujo y el reflujo de las mareas. La obra de Maclaurin contenía un célebre teorema sobre el equilibrio de esferoides elípticos; la de Euler acercaba bastante la esperanza de resolver problemas relevantes sobre los movimientos de los cuerpos celestes.


Hacia 1740 Euler tenía una gran reputación, hebiendo ganado el gran premio de la Academia Francesa en dos ocasiones en 1738 y 1740. En el verano de 1741, el rey Federico el Grande invitó a Euler a residir en Berlín. Esta invitación fue aceptada, y Euler vivió en Alemania hasta 1766. Durante su residencia en Berlín, Euler escribió un notable conjunto de cartas, o lecciones, sobre filosofía natural, para la princesa de Anhalt Dessau, que anhelaba la instrucción de un tan gran maestro. Estas cartas son un modelo de enseñanza clara e interesante, y es notable que Euler pudiera encontrar el tiempo para un trabajo elemental tan minucioso como éste, en medio de todos sus demás intereses literarios.


Durante los 25 años en Berlín, Euler escribió alrededor de 380 artículos. Escribió libros sobre cálculo de variaciones, órbitas planetarias, artillería y balística, sobre análisis, construcción de barcos y navegación, sobre el movimiento de la luna, lecciones de cálculo diferencial. Además de las cartas didácticas a la princesa de Alemania (3 vols., 1768-72).


En 1766 Euler volvió a San Petersburgo, para pasar allí el resto de sus días, pero poco después de su llegada perdió la vista del otro ojo. Durante algún tiempo, se vio obligado a utilizar una pizarra, sobre la cual realizaba sus cálculos, en grandes caracteres. No obstante, sus discípulos e hijos siguieron copiando su obra, escribiendo exactamente lo que le dictaba Euler. Una obra magnífica, que era en extremo sorprendente, tanto por su esfuerzo como por su originalidad. Euler poseyó una asombrosa facilidad para los números y el raro don de realizar mentalmente cálculos con grandes números.


En 1771, cuando estalló un gran fuego en la ciudad, llegando hasta la casa de Euler, un compatriota de Basilea, Peter Grimm, lo salvó de las llamas. Si bien se perdieron los libros y el mobiliario, se salvaron sus preciosos escritos. Euler continuó su profuso trabajo durante doce años, hasta el día de su muerte, a los setenta y seis años de edad. Después de su muerte en 1783, la Academia de San Petersburgo continuó publicando trabajos inéditos de Euler durante casi 50 años mas.


Euler era como Newton y muchos otros, un hombre capacitado, que había estudiado anatomía, química y botánica. La apacibilidad de ánimo, la moderación y la sencillez de las costumbres fueron sus características. Su hogar era su alegría, y le gustaban los niños. Pese a su desgracia, fue animoso y alegre, poseyó abundante energía; como ha atestiguado su discípulo M. Fuss, "su piedad era racional y sincera; su devoción, ferviente".


El trabajo de Euler en matematicas fue amplísimo. Ha sido el más prolífico escritor de matemáticas de todos los tiempos. Ha hecho importantes contribuciones en geometría analítica y trigonometria, donde fue el primero en considerar al seno, coseno etc. como funciones en vez de como cuerdas siguiendo a Ptolemeo.


Principales aportaciones de Euler en las matemáticas

  • Descubrió la igualdad C + V = A + 2.

  • Demostró que el baricentro, ortocentro y circuncentro están alineados. Recta de Euler.

  • Argumentó que el infinito separaba los números positivos de los negativos de forma similar a como lo hace el cero.

  • Definió las funciones logarítmicas y exponenciales.

  • Desarrolló el cálculo de números complejos, demostrando que tiene infinitos logaritmos.

  • Resolvió el problema de los Puentes de Konigsberg.

  • Introdujo los símbolos e, f(x), el sumatorio y la letra pi para dicho número (en honor a Pitágoras ya que era la inicial de su nombre).

  • Clasificó las funciones y formuló el criterio para determinar sus propiedades.

  • Elaboró e introdujo la integración doble.

  • Descubrió el teorema de la composición de integrales elípticas.

  • Dedujo la ecuación diferencial de la línea geodésica sobre una superficie.

  • Introdujo la ecuación de la expansión volumétrica de los líquidos.

  • Fue el padre de la Teoría de Gráficas.

  • Amplió y perfeccionó la geometría plana y de sólidos.

  • Demostró que podían conseguirse objetivos acromáticos de foco finito, asociando dos tipos de vidrios distintos.

  • Fue el primero en considerar el seno y el coseno como funciones.

  • Introdujo los factores integrantes en las ecuaciones diferenciales.

  • Generalizó la congruencia de Fermat, introduciendo una expresión que Gauss denominó "indicador".

  • Se adelantó a Legendre en el descubrimiento de la "ley de reciprocidad" de los restos cuadráticos.

  • Añadió el "cuadrado latino" a los cuadrados mágicos (“padre” de los famosos “sudokus”).

  • Ideó métodos para el desarrollo en serie de raíces.

  • Inició el estudio de las funciones simétricas de las raíces.

  • En álgebra, ideó métodos de eliminación y descomposición en fracciones simples.

  • A él se debe la utilización de letras minúsculas para designar los lados de un triángulo y de las mayúsculas para los vértices.


 
 
 

Comments


Publicar: Blog2 Post

Formulario de suscripción

¡Gracias por tu mensaje!

©2021 por El Rincón De La Ciencia. Creada con Wix.com

bottom of page